臺積電正在研究的新型存儲技術


眾所周知,我們生活在一個數字大爆炸的時代,需要處理的數據比以往任何時候都多,存儲器在數據流中起著關鍵作用。存儲技術發展更迭50年,逐漸形成SRAM、DRAM及Flash這三大主要領域。但是隨著半導體制造技術持續朝更小的技術節點邁進,傳統的DRAM和NANDFlash面臨越來越嚴峻的微縮挑戰;再加上由於這些存儲技術與邏輯計算單元之間發展速度的失配,嚴重制約計算性能和能效的進一步提升。

因此,業界開始對新型存儲技術寄予厚望。越來越多的新型技術迅速湧現,例如將處理任務移到內存附近甚至是內部,分別對應為近存計算和存內計算,以此來提高效率。他們使用新型的存儲材料和機制來存儲數據。

臺積電作為追逐先進工藝的扛把子,對於新型存儲技術的佈局也是緊鑼密鼓,畢竟邏輯和存儲是芯片重要的兩條腿,一個也不能落下。臺積電在研的新型存儲器解決方案主要涉及磁阻式隨機存取存儲器(MRAM)、電阻式隨機存取存儲器 (RRAM)、相變隨機存取存儲器 (PCRAM)、鐵電RAM等。臺積電近年來積極推動將嵌入式閃存(sFlash)改成MRAM和ReRAM等新型存儲制程。

MRAM

在新興的非易失性二進制存儲器中,自旋轉矩傳遞RAM (STT-MRAM)、自旋軌道轉矩RRAM (SOT MRAM)和壓控MRAM (VC MRAM)因其工作電壓低、速度快和耐用性以及先進的CMOS技術兼容性而特別具有吸引力。

臺積電研發STT-MRAM解決方案主要是用來克服嵌入式閃存技術的擴展限制。在2021年IEEE會議上,臺積電展示嵌入16nm FinFET CMOS工藝的STT-MRAM的可靠性和抗磁性。

此外,臺積電還在積極探索SOT-MRAM和VC-MRAM,並與外部研究實驗室、財團和學術合作夥伴合作。臺積電的SOT-MRAM探索由高速(<2ns)二進制內存解決方案驅動,該解決方案比傳統的6T-SRAM解決方案密度要大得多,同時也更節能。2022年6月,臺灣工研院宣佈,其與臺積電合作開發的低壓電流SOT-MRAM,具有高寫入效率和低寫入電壓的特點。工研院表示,其SOT-MRAM實現0.4納秒的寫入速度和7萬億次讀寫的高耐久度,還可提供超過10年的數據存儲壽命。

RRAM

臺積電認為,AI和IoT所組成的強大組合AIoT,可能會在未來幾年推動半導體行業的增長。高能效機器學習需要具有低功耗的大容量片上存儲器。它可以同時支持 1T1R(1 個晶體管 + 1RRAM)和 1S1R(1 個選擇器 + 1RRAM)陣列架構。與傳統的1T1R架構相比,1S1R架構可以實現更高的密度並實現3D集成。2020年臺積電開始生產28nm電阻隨機存取存儲器(RRAM),這是臺積電為價格敏感的物聯網市場所開發的低成本解決方案。

2022年11月25日,英飛凌和臺積電宣佈,兩傢公司準備將臺積電的RRAM非易失性存儲器 (NVM) 技術引入英飛凌的下一代AURIX™微控制器 (MCU),首批基於28納米 RRAM 技術的樣品將於2023年底提供給客戶。目前,市場上的大多數 MCU系列都基於嵌入式閃存技術。RRAM的引入對MCU來說是一項新的革新,RRAM NVM可以進一步擴展到 28 納米及以上。臺積電和英飛凌成功為在汽車領域引入RRAM奠定基礎。

臺積電還在繼續探索新的RRAM材料堆棧及其密度驅動集成,以及可變感知電路設計和編程結構,以實現面向AIoT應用的高密度嵌入式RRAM解決方案選項。

PCRAM

相變隨機存儲器(PCRAM)是一種基於硫化物玻璃的非易失性存儲器。通過控制焦耳加熱和淬火,PCRAM在非晶態(高電阻)和晶體態(低電阻)之間過渡的電阻。存儲器的電阻狀態在很大程度上與非晶態區域的大小及其可控性和穩定性有關。這使得PCRAM細胞獨特地能夠存儲多個狀態(電阻),從而具有比傳統二進制存儲器更高的有效細胞密度的潛力。PCRAM可以支持陣列配置,包括一個晶體管和一個存儲器(1T1R)陣列和密度更大的一個選擇器和一個存儲器(1S1R)陣列。

相變存儲器具有很有前途的多級單元 (MLC) 功能,可滿足神經形態和內存計算應用中不斷增長的片上存儲器容量需求。臺積電一直在探索PCRAM材料、電池結構和專用電路設計,以實現AI和ML的近內存和內存計算。臺積電的一篇論文中指出,他們提出三種新穎的 MLC PCM 技術:1)設備需求平衡,2)基於預測的MSB偏置參考,3)位優先佈局,以解決神經網絡應用中的 MLC 設備挑戰。使用測量的 MLC 誤碼率,所提出的技術可以將 MLC PCM 保留時間提高105倍,同時將ResNet-20推理精度下降保持在3%以內,並在存在時間阻力漂移的情況下,將CIFAR-100數據集的精度下降減少 91% (10.8X)。如下圖所示。


臺積電在PCRAM上的研究(圖源:IEEE)

Ferroelectrics

2011年在摻雜HfO2 ALD多晶薄膜(<10 nm)中發現鐵電性(FE)引發學術界、研究機構和工業界的大量研究。其主要原因有:一,鐵電材料可與當前的CMOS加工工藝兼容;二,鐵電材料高速(<100 ns)和低開關能量操作使FE存儲單元成為新興非易失性存儲應用的重要探索課題。除具有兩種穩定極化狀態的典型記憶單元外,由於存在多個極化域的多個有效極化狀態,FE記憶單元也具有潛在的適用性,用於AI/ML模擬突觸,這也已在多晶鐵電薄膜的文獻中得到證明。

臺積電正在探索鐵電薄膜和堆疊及其可控性、狀態保持性、持久性和可擴展性,以實現與先進CMOS技術集成的高密度、高容量數字存儲器。臺積電表示,重復循環後殘餘極化的退化是可靠性的主要問題,下圖是鐵電 HfZrO 的疲勞表征及其恢復行為進行的研究。


鐵電HfZrO的疲勞表征及其恢復行為(圖源:IEEE)

選擇器(Selector)

但是要實現高效能和節能的高密度非易失性存儲器,除上述這幾大新型的存儲材料之外,臺積電還在索新的選擇器材料、器件和工藝。

選擇器是一種兩端裝置,它在高於特定電壓時開啟,否則保持關閉狀態。可以通過使用1S1R 結構(1個選擇器+1個存儲器配對)作為構建塊來實現高密度存儲器架構(例如交叉點陣列)。當這樣的存儲器陣列被適當地偏置以操作選定的存儲器單元時,來自未選定的存儲器單元的潛行電流可以被串聯連接到每個存儲器單元的選擇器消除。為實現高性能,開發符合特定非易失性存儲器特性的選擇器至關重要。

選擇器的關鍵要求包括通態與斷態電流比(非線性)、高通態電流密度、快速開關速度、高耐力循環、高熱穩定性、易於工藝集成、以及與存儲元件的操作兼容性。

目前業界正在研究四種主要類型的選擇器:Ovonic閾值開關 (OTS)、金屬-離子閾值開關、絕緣體-金屬過渡和隧道勢壘類型。使用OTS選擇器和 PCRAM 的交叉點存儲器陣列作為存儲級存儲器已經投入生產,但仍有很大的改進空間。高工作電壓是關鍵問題之一。為更有效地與邏輯平臺一起工作,選擇器和非易失性存儲單元的總工作電壓應與邏輯平臺電源電壓兼容(例如,高級節點為 1.5V)。

低壓選擇器對於高密度非易失性存儲器的低功耗操作至關重要。臺積電的一項研究中表明,基於無砷硫族材料的選擇器在閾值電壓~1.3V和泄漏電流~5nA的情況下,具有超過10 11個循環的高壽命。耐久性的提高歸因於適當的摻雜劑抑制相分離,形成更穩定的非晶網絡。


臺積電基於無砷硫族化物材料的選擇器(圖源:IEEE)

寫在最後

就目前新型存儲的商用化進度來看,臺積電和英飛凌基於RRAM合作的MCU算是比較快的革新進展,RRAM將有望成為閃存的替代品。過去幾乎所有的MCU細分市場都使用NOR Flash,但是閃存的微縮化步伐完全趕不上CMOS邏輯的微縮,閃存MCU的量產代際仍停留在40nm節點,而MCU卻已經開始向28nm邁進,而且到22nm世代以後,CMOS邏輯的晶體管走向FinFET立體化,閃存的MCU研發技術將極其困難。所有的新技術都需要各個產業鏈的通力支持,臺積電作為晶圓代工這一產業鏈上的重要角色,在推動新型存儲發展方面起著很大的作用。

而MRAM則有望成為SRAM的替代品。臺積電作為先進工藝界的帶頭人,早就感知到SRAM的微縮進入極限。此前,臺積電的一篇論文中表示,SRAM的微縮似乎已經完全崩潰。據WikiChip的報道,在2022年的第68屆年度IEEE國際電子器件會議 (IEDM) 上,臺積電談到其新的N3節點中高密度SRAM位單元大小根本沒有縮小,在0.021μm²處與他們的N5節點的bitcell大小完全相同。然而,在0.0199μm²,它隻有5%的縮放(或0.95倍收縮)。也就是說,臺積電的N3B和N3E雖都提供1.6倍和1.7倍的芯片級晶體管縮放,但SRAM卻隻有1倍和1.05倍的縮放。所以對MRAM,臺積電進行多種研究性嘗試。

從臺積電的佈局中可以看出,臺積電采取的是“廣撒網,遍撈魚”的策略,對所有的新型存儲技術都進行探索,因為每個新型存儲技術都有其獨到的優勢,未來在存儲領域不一定隻有一個贏傢。

(本文內容編譯自臺積電。)


相關推薦

2024-03-20

的嚴重影響,但該公司的發展遠未結束。該公司的工程師正在研究一種新型存儲技術,這種創新介質理論上可以大大改進傳統的磁帶或硬盤設備。由於制裁,華為無法采購最新的硬盤技術來滿足其存儲需求,因此選擇開發自己的

2023-12-02

導體產業對於先進工藝制程的追求永不停歇。2022年,當臺積電宣佈已經掌握成功大量量產3nm鰭式場效電晶體制程技術後,1nm開始一步步逼近。對於先進工藝的掌握,意味著更高的性能、更頂尖的技術。從3nm跨越到1nm,這其中面

2023-02-26

芯片制造商中芯國際集成電路制造有限公司(SMIC),而臺積電(TSMC)等芯片制造商被禁止向中國提供特征尺寸小於7納米的先進芯片。去年,在一套新的全面規定中,商務部增加新的規定,禁止美國公民和個人在沒有許可證的情

2022-07-21

”的一部分。聲明還稱,兩傢公司正在“著手商議”,由臺積電負責生產這款芯片。大眾采購主管Murat Aksel表示:“通過與意法半導體和臺積電的直接合作,我們正在積極塑造公司的整個半導體供應鏈。我們正在確保生產出我們

2022-07-21

據semiwiki報道,在最近的VLSI技術與電路研討會上,臺積電研發高級副總裁YJMii博士發表題為“SemiconductorInnovations,fromDevicetoSystem”的演講。該演示文稿提供對臺積電未來研發計劃的見解,超越當前的路線圖。還強調正在研究的技術

2022-08-01

市場的領先者,同時也在采取措施,縮小與主要競爭對手臺積電在芯片代工領域的差距。今年5月,美國總統拜登在訪問韓國期間參觀三星的平澤芯片工廠,這表明該公司對全球經濟的重要性。然而分析師指出,今年早些時候,

2024-03-17

爾首席執行官帕特·基辛格表示,英特爾將在2025年之前從臺積電和三星代工手中奪回工藝領先地位。英特爾希望在行業代工領域挑戰臺積電和三星代工。合同代工廠從無晶圓廠芯片設計師那裡獲取芯片設計(無晶圓廠意味著他們

2023-11-06

器讓芯片制造商可以選擇降低對代工廠的依賴,同時也讓臺積電和三星電子等代工芯片制造商更有可能批量生產芯片。佳能表示,這種機器所需的功率隻有其EUV同類產品的十分之一。Mitarai表示:“我不認為納米壓印技術會取代EUV

2024-09-12

快科技9月11日消息,據媒體報道,近日,一個國際研究小組在《自然通訊》雜志上報告他們在理解和控制反鐵磁材料方面的重大進展。這種材料的數據存儲速度和能源效率有望超出傳統鐵磁材料1000倍,為解決現代數據中心面臨

2024-04-09

探索雙層磁性介質等未知領域。希捷、NIMS 和東北大學的研究人員最近在《Acta Materialia》上發表一項研究,提出一種可在多層配置中工作的 HAMR 存儲新方法。通過在同一磁性介質的多層上記錄比特,下一代 HAMR 磁頭可以實現前所

2024-04-25

幾個月前,臺積電發佈2023年年報,但顯然,文件中包含的關鍵信息被遺漏。在深入探討之前,我們先來談談臺積電的A14,或者說被許多分析師稱為技術革命的A14。臺積電宣佈,該公司終於進入&amp;quot;Angstrom14時代&amp;quot;,

2023-11-17

、企業級 NAS 和需要存儲大量數據的小型企業。西部數據正在通過其分銷渠道出貨 WD Gold 24 TB 硬盤,預計不久就會投放市場。Ultrastar DC HC680 和 HC580 硬盤目前已進入特定 CSP、超大型企業和 OEM 的認證階段。內部部署這些設備的企

2024-05-06

臺積電於4月末在美國加利福尼亞州舉辦2024年北美技術論壇,發佈其最新半導體制程技術A16(1.6nm)、下一代先進封裝和3D芯片技術等6大半導體技術創新,引發業界關註。在全球發展人工智能(AI)的熱潮之下,臺積電憑借其領先

2024-05-24

:一是每比特極致性價比的存儲技術,二是面向AI時代的新型數據底座。華為希望通過這一懸賞活動,推動全球科研人員在大規模數據處理的存儲體系結構創新、海量數據的分級存儲介質應用創新、大模型存儲集群技術、企業/邊