GTC對話黃仁勛:老黃眼中的“GPU”和別人有很大差別


氣氛突然嚴肅起來。“有媒體認為你要麼是AI時代的達芬奇,要麼是AI時代的奧本海默,你怎麼看?”“奧本海默是造炸彈的,我們(英偉達)不幹這個。”面對這個多少有點戲謔的問題,英偉達創始人、CEO黃仁勛遲疑片刻,非常認真地回答出來。

當地時間 3 月 19 日,以堪比流行巨星的熱度完成 GTC 2024 的開場演講後第二天,黃仁勛接受全球媒體采訪。


黃仁勛給在場媒體重新解釋一遍“演唱會”上的要點|圖片來源:極客公園

無論是宏大問題例如“AGI 何時到來”、“英偉達如何看待中國市場”,或者是具體到新推出的 NIM 軟件如何應用,這位全球市值第三公司的掌舵人,都能將問題分解並抽象成更容易理解的層次,用簡單的比喻回答出來,雖然其中可能不乏“太極”的嫌疑,但至少令人難以懷疑回答者的誠懇。

兩萬億的市值新高度下,老黃認為,GPU 芯片市場,不是英偉達的追求——“英偉達不造芯片,英偉達造數據中心”,為此,英偉達搭建所有:硬件、軟件、服務,讓客戶決定怎麼購買自己的數據中心。


GTC 2024 Keynote 演講中,老黃展示的 5 個要點:

新工業革命(加速計算和生成式 AI)下,英偉達的新基建包括:Blackwell 平臺;NIMS;NEMO 和 NVIDIA AI Foundry;Omniverse 和 ISAAC 機器人。|圖片來源:NVIDIA

01 GTC 新品的中國市場計劃

問:新的網絡和技術計劃向中國銷售多少?有任何中國特定SKU的信息可以披露嗎?是否為該市場做出任何考慮或改變?

黃仁勛:我還沒有向你宣佈這一點,你很貪婪(哈哈),這就是全部答案。現在對於中國,我們有 L20 和 H20 芯片符合出口要求,我們正在盡最大努力為中國市場組織調配資源。

02 AI Foundry 的目標

問:你在主題演講裡提到AIFoudry 正在許多企業起作用,這個計劃的總體戰略和長期目標是什麼?

黃仁勛:AIFoundry 的目標是構建軟件。這不是指軟件作為工具,任何人都有這樣的軟件。很久以前創建的兩個最重要的軟件,一個叫做 Office,它讓軟件變得 RTS(Real-Time Software,實時軟件)。

另一個非常重要的軟件叫做cuDNN(CUDA 深度神經網絡庫)。我們有 AI 所有這些不同的。未來的庫是一個微服務,因為未來的庫不僅僅用數學來描述,還用 AI 來描述。未來,它們都將變成 NIMs(微服務)。

這些 NIMs 是超級復雜的軟件,你所要做的就是來到我們的網站。你可以選擇用戶在那裡,或者下載它、在另一個雲端運行它,或者下載在你的本地計算機上運行。當運行你的工作站、你的數據中心時,這項服務將使它們非常高效,所以這是一種在環境中使用的新方式。現在,當你作為一個企業運行這些庫時,我們有一個軟件許可(Liscence)的授權操作系統可用,你可以以 4500 美元/GPU/年的價格使用這些服務。

03 Blackwell 定價

問:你之前說最新一代AI芯片 Blackwell 的定價在 3 萬至 4 萬美元,有更精確的信息嗎?

黃仁勛:這很難說,我也隻是試圖讓大傢對我們產品的定價有一定體感,並不打算給出具體報價。

Blackwell 系統的定價非常不同,因為每個人要的配置不同。如果不僅使用 Blackwell,Blackwell 系統通常包括 NV-Link 在裡面,所以不同系統的定價不同。像往常一樣,定價范圍通常視 TCO(總體擁有成本)而定。

英偉達不造芯片,英偉達造數據中心,為此我們搭建所有任務,引入所有軟件,調整它使數據中心系統盡可能地運轉良好。然後,瘋狂的部分來,我們將數據中心聚合成更小的部分,允許客戶根據自己的特定需求對其進行修改,這包括網絡、存儲、控制平面、安全和管理模塊,想辦法把數據中心整合到客戶的系統中,最終,客戶決定如何購買它,所以跟過去銷售芯片不同,Blackwell 的定價不是芯片的事,我們的商業模式也反映這一點。

英偉達的機會不是 GPU 芯片,是數據中心,數據中心正在快速走向加速,這是每年 2500 億美元的市場,並以每年 20% 至 25% 的速度增長,這主要是由於 AI 方面的需求。其中,英偉達會占據重要的份額,從 1 萬億美元升至 2 萬億美元,我認為是合理的。


黃仁勛:你說的 GPU,和我說的 GPU,腦海中想象的差距非常大|圖片來源:極客公園

04 Sam Altman 要擴張到芯片行業

問:Sam Altman 一直在與芯片業的人們談論擴大AI芯片的規模。他和你談過這個問題嗎?

黃仁勛:我不知道他的意圖。他認為生成式AI會變得很大,在這一點我很認同。

今天計算機產生像素的方式是從數據集中檢索數據,處理數據,然後傳遞數據。在整個過程中,人們認為需要消耗的能源非常少,但這恰恰相反。原因是每次你觸摸手機、每個提示,需要與數據集賽跑並返回。從數據集中檢索數據,使用 CPU 收集所有必要的部分,然後以一種從推薦系統的角度看有意義的方式組合信息,然後將結果信息發送回用戶,這個過程需要大量的計算。

這就像每次問我一個問題,我都需要跑回辦公室檢索信息,這需要大量的精力。未來,越來越多的計算將是生成的,而不是基於檢索的。當然,這個生成過程必須是智能的、與上下文相關的。我相信,未來人們電腦上的幾乎每一個像素、每一次交互都將通過生成過程產生,我相信 Sam 也這麼認為。希望通過 Blackwell 新一代架構能為生成式 AI 這個領域做出重大貢獻。現在大多數體驗還是基於檢索的,但是如果未來每個人的人機交互都是生成式的體驗,我會很驚訝。這是一個巨大的機遇。

05 個人大模型會是什麼樣子?

問:我完全同意你對未來軟件的定義,我們的生活也在通過LLM發生很大變化。在基礎模型方面,你認為未來會是什麼樣的?

黃仁勛:核心是,我們如何擁有個人的大模型?有一些方式可以做到。開始,我們認為這個過程可能需要微調(fine tuning),在持續的使用過程中,持續微調。

但是,正如你所知,微調是相當耗時的。然後我們發現提示詞工程(prompt engineering),發現上下文學習(context learning),發現工作環境(working environment)等等。

我認為答案將是所有這些的組合。在未來,你可以通過隻微調一層叫 Lora 的權重(weights),鎖定其他部分不必微調,從而低成本地做微調,你可以做提示詞共創、上下文學習、增加模型記憶,所有這些成就你獨特的大模型,可以在雲端運行,也可以在你的本地電腦上運行。

06 對 AI 芯片初創公司的看法

問:昨天在你的主題演講後,芯片公司 Groq 發推文說自傢芯片跑得仍然更快,你怎麼看AI芯片初創公司的評論?


黃仁勛:我還沒解那麼多(哈哈),不評論。

任何以 token 方式做生成的模型都需要其獨特的方式,因為 Transformer 不是任何一個模型的名稱。

這些模型總體基於 Transformer 技術,都利用 Transformer 註意力機制,但模型與模型之間存在巨大差別。有的模型用混合專傢模型(Mixture of Experts),混合模型裡有的是兩個專傢模型,有的是四個專傢模型,這些模型等待消息,以及路由分發,裡面的一切步驟都不同,模型中的每一個都需要特殊優化。

此時,如果計算單元被設計成隻能以特定的方式、做特定的事情,它就是一個可配置的電腦,而不是可編程配置的計算機,就無法受益於軟件創新的速度和潛力。

就像 CPU 的奇跡不可低估一樣,這麼多年,CPU 一直是 CPU 的原因,是它克服這些年來設置在 PC 主板上的可配置硬件,軟件工程師的才能可以通過 CPU 來實現。相反,如果你把它固定在芯片上,你就斷軟件工程師能帶給芯片的聰穎智慧。

這就是英偉達芯片能夠在不同的 AI 模型架構(從 AlexNet 一直到 Transformer)下,都能表現出色的原因,英偉達找到一種方法,從一種非常專業的計算形式中受益。芯片在這裡被用來促進軟件,而英偉達的工作是促進發明,促進像ChatGPT的發明。

07 機器人空間模擬如何利用語言模型?

問:你講述使用生成式AI和模擬/仿真(simulation)來大規模訓練機器人,但是有很多事情我們不知道如何很好地模擬,特別是當涉及到結構性的環境,如何突破限制繼續訓練機器人?

黃仁勛:有多種方法可以做到這一點。首先,你可以在我們的語言模型上下文中構建你的問題或觀點。

大型語言模型以不受約束和非結構化的方式運行,這同時也是它的潛力之一。它從文本中學到很多東西,但可能不適合泛化。它們如何在空間泛化是一種“魔力”,機器人的ChatGPT時刻可能就在眼前。

為克服這個問題,你可以指定上下文和問題,例如告訴它處在特定條件的廚房中。通過應用 ChatGPT 的魔力,機器人可以有效地泛化並生成對軟件有意義的 token。一旦你的計算機感官識別這些 token,機器人可以根據這些例子進行歸納。

08 預判下一個 ChatGPT 時刻

問:你提到一些行業先迎來 ChatGPT 時刻。哪些行業會率先變化?可以分享你看到的突破,尤其讓你激動人心的案例嗎?

黃仁勛:有很多例子。我對Sora非常興奮,去年在 wayve 上看到同樣的能力,這是關於文生視頻的例子。

為生成一個這樣的視頻,模型必須對物理規律有感知,比如把放在桌子上,而不是中間;走路的人是在地面上。不能違背物理規律。

另一個例子是我們用 Earth-2 來預測極端天氣影響。這是一個關鍵的研究領域,因為極端天氣事件會對當地社區造成毀滅性的影響。利用 Earth-2,可以在 3 公裡尺度上預測極端天氣事件的影響。這是對現有方法的重大改進,現有方法需要的超級計算機要大 2.5 萬倍。

生成新藥物和蛋白質是另一個非常令人印象深刻的潛在用例。這是通過像 Alphago 這樣的強化學習循環來實現的,它允許在不消耗純物質的情況下探索大分子空間,這有可能徹底改變藥物發現。

這些是非常有影響力的東西,機器人技術也是如此。


在 3 月 18 日的 GTC 開場演講中,老黃註視著最新的 Blackwell 架構產品|圖片來源:極客公園

09 芯片出口管制如何影響英偉達

問:對芯片的出口管制,以及地緣政治,會對英偉達產生什麼影響?

黃仁勛:有兩件事我們必須馬上去做。第一,解所有政策,以確保其合規;第二,也要提高供應鏈韌性。

關於後者,我舉個例子。當我們把Blackwell 芯片配置成 DGX處理器時,其中有 60 萬個零件來自世界各地,很多來自中國。就像全球汽車供應鏈的復雜性一樣,供應鏈的全球化很難被打破。

10 和臺積電的關系

問:你能談談與臺積電的關系嗎?在過去的幾年裡,隨著不斷芯片封裝的復雜性,臺積電如何幫助英偉達實現目標的?

黃仁勛:與臺積電的合作是我們最緊密的合作之一,因為我們要做的事情非常難,而他們能做得非常好。

我們從臺積電得到計算單元,CPU、GPU 裸芯片,良率很好。存儲器是來自美光、海力士、三星,並且這些組裝必須在臺灣完成。所以,供應鏈並非易事,需要公司之間的協調。這些大公司與我們一起合作,也逐漸意識到,更加密切的合作是非常必要的。

我們從各傢公司獲取部件,然後組裝,第三傢公司測試,第四傢公司組成系統,當然這個大系統最後是為建成一個超級計算機,再進行測試。最終,我們建立數據中心。想象下,所有的加工制造就是為形成一個巨大的數據中心。整個供應鏈從上到下復雜度非常高,因為我們不僅僅是組裝,除芯片本身是個奇跡外,我們做成巨大而龐雜的系統。

所以,當人們問我對GPU是什麼感受時,可能一部分覺得它有點像Soc(集成芯片)而已,而我看到的是架子、線纜、交換機等等。這才是我心中 GPU 和軟件的模型。臺積電真的很重要。

11 雲業務的戰略

問:英偉達正在向雲業務轉型,其他雲廠商則在做自己的芯片。他們會影響你的定價策略嗎?英偉達雲業務的策略是什麼?會向中國客戶銷售 DGX 雲業務嗎?

黃仁勛:英偉達與雲服務提供商合作,將其硬件和軟件放入他們的雲中,這樣做的目標是將客戶帶到他們的雲中。

英偉達是一傢計算平臺公司,我們開發軟件,我們有一批追隨英偉達的開發者,因而,我們為使用英偉達 DGX 的雲服務供應商(CSP)創造需求、帶去客戶。

12“當代達芬奇”,還是“奧本海默”?

問:你曾說 AGI 將在 5 年內到來,這個時間預測有發生變化嗎?AGI 的加速到來會讓你感到害怕嗎?有人說你是當代達芬奇(多才多藝、做出如此貢獻),也有人說你是當代的奧本海默,你怎麼看?

黃仁勛:奧本海默是造炸彈的,我們(英偉達)不幹這個。

先具體定義 AGI,這樣我們才能知道什麼程度才算到達 AGI、什麼時候到達。如果 AGI 意味著在大量的測試集上,數學測試、閱讀測試、邏輯測試、醫學考試、法律考試、GMAT、SAT 等等,軟件程序可以做到比大多數人類都更好,甚至比所有人都好,那麼計算機在 5 年內可以實現 AGI


相關推薦

2024-03-19

北京時間3月19日4時-6時,英偉達創始人黃仁勛在美國加州聖何塞SAP中心登臺,發表GTC2024的主題演講《見證AI的變革時刻》。鑒於過去一年多時間裡AI帶來的生產力變革,以及英偉達等一眾概念股的表現,老黃的演講已經變成全球

2024-03-19

2024年3月18日的GTC上,黃仁勛正式成新的喬佈斯。當天下午黃仁勛走上臺開始演講,而這次與以往都不同。這場發佈會在SAP中心進行,人們在百米長的隊伍裡要經過兩個小時地檢票和等待,裡外裡轉好幾道彎,才進到演講會場。

2023-02-28

一次,所以今年不會換代。考慮到最近大火的OpenAI生成式對話機器人ChatGPT的背後就是NVIDIA的計算卡驅動,老黃這次言說的主角不言自明。

2024-03-26

,黃仁勛還主持與七位 Transformer 論文作者的討論會。在對話中,專傢們對人工智能未來的發展方向進行展望。Transformer作為大模型的基礎,這些作者專傢們認為,未來的重點將是提高模型的推理能力和常識理解。同時,高質量的

2022-09-21

9月20日的GTC活動上,英偉達CEO黃仁勛在演講中發佈萬眾矚目的英偉達新一代遊戲顯卡RTX40系列。本次英偉達共發佈三款顯卡,分別是RTX40系旗艦顯卡RTX4090與定位高端的RTX408016GB、RTX408012GB。RTX 40系列顯卡采用新一代RTX架構,計算能

2022-08-25

不過RTX40系顯卡今年還是要發的。在電話會議上,NVIDIACEO黃仁勛幾乎明確新一代架構顯卡下個月發佈的消息,因為9月20日有NVIDIA的GTC大會,他會在這次大會上公佈RTX顯卡重塑3D圖形及遊戲的最新進展。關於顯卡的清庫存,黃仁勛

2023-03-22

臺進行數據處理、優化服務排隊、創建員工支持和培訓的對話式AI數字化形象。04.推出新一代元宇宙服務器 引入生成式AI和模擬仿真更新面向元宇宙領域,英偉達推出第三代OVX計算系統和新一代工作站,為基於NVIDIA Omniverse Enterp

2024-02-07

碩士學歷黃仁勛,剛剛當選美國工程院院士。以後他還是教主、老黃、“核武狂魔”,但也得尊尊敬敬地被叫一聲“黃院士”。作為美國工程師最高榮譽之一,今年(2024年)共新增114名新院士和21名國際院士。其中最受矚目的,

2022-09-06

的GTC2022準備一批獨特的禮物,這其中就包含一款NVIDIACEO黃仁勛簽名版的RTX3090公版顯卡。據悉,官方會從報名者中抽選幸運參與者,送出簽名版顯卡。國內地區的用戶想要獲得這張顯卡,需要先註冊並登陸GTC 2022,然後在主題演

2023-02-28

一次,所以今年不會換代。考慮到最近大火的OpenAI生成式對話機器人ChatGPT的背後就是NVIDIA的計算卡驅動,老黃這次言說的主角不言自明。

2023-02-18

經確定春季GTC大會將於3月20日到23日舉行,其中21日有CEO黃仁勛的主題演講。此前NVIDIA的GTC大會因為種種限制,黃仁勛是在自傢廚房發佈幾款重磅新品,現在已經不用這種形式,可以直接線下大會,但是大傢依然很關心這次老黃

2024-03-25

的科技盛宴本周在這裡上演。當地時間3月18日,英偉達CEO黃仁勛身著標志性的黑色皮夾克,登上萬人體育場,宛如一位搖滾巨星。“歡迎來到GTC大會。希望你們意識到這裡不是演唱會,而是一個開發者大會。”他在開場時不無幽

2024-03-21

會已在當地時間周一拉開帷幕,在當天的主題演講上,CEO黃仁勛宣佈推出NVIDIABlackwell平臺,並宣佈推出Blackwell架構的B200GPU、GB200超級芯片等。同此前的GTC大會等重要活動一樣,經常以黑色皮夾克現身、有皮衣黃之稱的黃仁勛,在

2022-09-20

YouTube | Twitch)WCCFTech 指出,英偉達創始人兼首席執行官黃仁勛(Jensen Huang)將在 GTC 2022 主題演講期間,披露該公司在遊戲、創作和圖形技術方面的最新突破。GTC 2022 定於 9 月 19-22 日舉辦作為業內領先的技術會議,NVIDIA 及其合